No． 106

2004（平成 16）年3月15日 Shizuoka Consulting Engineers Association 静岡県技術士協会事務局 〒 4160952 （森建設コンサルタントセンター内（TEL 0545646665 FAX 054564 3690）

会 長：守屋 文二 専務理事：吉澤 淳編集担当者：森 稔夫 山之上 誠 高尾和宏振込口座：静岡銀行 清水中央支店 普通 0718595 静岡県技術士協会 会計 藤田協右（054364 1148）

2003 年度 12 月， 2 月例会報告

会員講師による研修会
12月11日，於 静岡市クーポール会館
1，風力発電の近況 松本文雄会員
2，富士山 雪水の世界から見る
安間 荘会員
3，（財）しずおか産業創造機構
の紹介と技術士への期待
石野達佳会員
参加者 38 名
2月21日，於浜松市アクトシティー コングレスセンター 52 会議室
1，太陽熱利用技術の現状と課題

風力発電の近況

まず最初に，私がネパールの峠で出会った，希望と，誇りをもつた水汲みの少女を見て，我々 の近代文明が如何に脆弱なものであるかと思っ たことを話しておきます。

まず，日本ではエネルギーの分類の言葉が錯綜 している，（1図）新エネルギーとはこの斜線の部分です。自然エネルギーとは太陽光，風力，水力，地熱，波力などをいっている。自然エネ ルギーと新エネルギーとは違う。これらは日本 での定義です。外国ではこういってもわからな い，外国では再生可能エネルギーという言葉は， きちんと使われています。新エネルギーを拡大 しなければいけない理由は（2図），日本では温

2，風力開発の環境問題
松本文雄会員
3，自動車における資源•環境技術
神立 信会員
参加者 33 名
会員の皆様の日頃の業務の一端を紹介して頂き，盛況であった。
なお講演内容が大変豊富であったため全文を掲載できませんので編集子の独断で編集させて頂 きました。御了承ください。
（文責 編集子）

清水博之会員

会員 松本文雄

暖化，酸性雨，動物の絶滅に対しての対応，エ ネルギーを殆ど産出しない日本の安全性，新市場の拡大，（デンマークなどでは風力により 60 万人の雇用が生み出されたといわれてい る）その他災害時などに強い，熱利用により効率の高いコージェネが可能，大型発電所に比べ送電損失が少ない等がある。風車の形は 3 枚羽根のものしかないと考えられると思いますが， いろいろなものがあります。（3 図），軸が水平 なもので風に向うようにしてやる必要があるも のと，軸が垂直なもので風がどの方向に来ても回るものの，この基本形が 12 種類と，これの組み合わせのものがあります。（4 図）によれば

水平軸風車と，垂直軸風車の特徴ですが，水平軸は，揚力型で高効率，垂直軸は抗力型で効率 が低い，また水平軸は方位制御が必要だが，垂直軸はいらない，の一長一短があります。大型 は水平軸，小型には垂直軸も取り入れられてい る。風力発電の動向（5 図）は，ストール制御 からピッチが変えられるピッチ制御へ，制御性 も向上し効率も高い。次に誘導発電機から同期発電機に変わっている。また，極数の多い多極 の発電機を使うと，騒音，パーツも減り保守性 も良くなる。風力発電の日本固有の課題とは（6図）風況が悪い，平地が少ない，安定して風が吹かない，電力網が弱い，末端に行くほど弱小 になるので大きな発電機が使えない，落雷が多

エ水ルギー－分類（日本）

<1 図 $>$

い，日本海側に冬期雷が起きるが強い雷に耐え る風車がない。洋上発電のためには遠浅でなけ ればならないが遠浅ではないのでフロート型の ものをやらなければならない。国民のエネル ギーに関する関心が低い，関連する規制が多い，電力とか工事に対する品質基準が高いのでコス トが高くなる。ヨーロッパとの比較で，風力発電機の単価は違わないが，その他の価格が倍近 くになるので日本では苦戦している。発電機の種類ですが，（7図）DCリンクは発電した交流電気を一旦直流にし，再び直流からインバー ターで交流にし，周波数，電圧をトランスで合 わせて保護装置を通して系統に結んで，売電を している。A C リンクの場合一定周波数の交流

新エネルギー拡大の意義

（1）地球環境の保全

温暖化，酸性雨，絶滅種等への対応
（2）エネルギー・セキュリティー
輸入依存エネルギーの削減－安全性
（3）経済成長
市場拡大の期待できる成長分野
（4）その他
分散型自立電源，熱利用，送電損失
＜ 2 図＞

	水平軸風車と垂直軸風車の特徵	
比較項目	水平蟿風車	垂直軸風車
風車の種類	－揭力型が多い，高効率である －低トルク風車が多く機動性が黒い	抗力型が多い，揚力型はダリウス等高トルク風車は発雨以外の用途向き
構造の特徽	－塔の上に発䉓機，増速機，ヨー制御かの り構造上不安定，建設，保守が困蕹 －モノ゚ールでは地上占有面栍が小さい	－発䉓機などの重量物を地上近くに醞 けるため保守が容易 －大型では設置面積が増える
口一夕形式	－翼，ロータは方もち梁で構想上不安定 －多段積みの横造が難しい	－大型は上部を支持し安定，小型数kW まで）は片持梁も多い －多段漬み棤造がとりやすい
方位制御	－ヨー制御か必須，追従ロスがある シャ件スゴックなな荷重で振動を起し易い	- ヨ一制御が不要，追従ロスがない - ジャイロスコビックな荷重を受けない
可制御性	－哥のビッチ制御などで高効率運転がで きる	－㑭のビッチ制御や制動に空力を使う ことが困難
その他	翼加工費が高しが，材料費は少ない －出力あたり安価	－直線双は加工費は安いが，全般に材料囊は高い。

<4 図 $>$

を出してトランスで変圧し系統に売っている。 D C リンクの場合はインバーターで無効電力制御がやれるので，系統の無効電力が調整できる特徴がある。

今後の技術課題（8図）には，風車専用翼の開発，今まで航空機で開発された翼を使ったりし ているものが多いが，これを風車専用のものを開発する，ギヤレスは大型の多極発電機でやる， その他洋上発電，まだ日本では行われていない が，北海道で湾内に 1 箇所，海の中に立てた例 があります。離島などでは今ディ ゼルが多い のですが，離島には強風が吹く，最近石垣島の風車が 4 台くらい倒れてしまいましたが，ヨー ロッパ系の風車は，60メートルくらいまでは持 つといわれていますが，60 メートルを越えると

風力発電の動向

| （1）ストール制御 \Rightarrow ピッチ制御 | （制御性向上） |
| :--- | :--- | :--- |
| （2）誘導発電機 \Rightarrow 同期発電機 | （突入電流減） |
| （3）増速機経由駆動 \Rightarrow 多極発電機 | （騒音，保守性） |
| （4）ACリンク方式 \Rightarrow DCリンク方式 | （可変速運転） |
| （5）定速 $(2$ 速）運転 \Rightarrow 可変速運転 | （出力向上） |

○ 大型，大出力化
（発電単価低減）
○ ウインドファーム化
（効率化）
－洋上発電へ
（適地減少，効率）

風車は倒れても当たり前ですが，90メートルま では耐えられるというものを三菱重工が離島用 に造つております。三菱電機も造つています。 ギヤレスの 2 MW くらいのもので外国向けが多 い。

日本国内では 90% がヨーロッパ系の風車と なっている。国産は三菱，富士を足しても 10% に達しない。今後は洋上に風車を立てる，また陸上には1箇所に多くのものを立てるウィンド ファーム，に移つていくと思います。以上私は風車風力発電の宣伝だけでなく，生活の中に風 をもつと意識して使っていく＂風の伝道師＂と考えております。

風力発電に伴う日本固有の課題
（1）風況か悪い（カスト，風向，山岳）
（2）電力網が弱い（離島電力の大規模化したもの）
（3）落雷被害が多い（冬季雷，日本海例）
（4）近海が遠浅ではない（洋上発電）
（5）国民のエネルギーに無開心（民度が低い
（6）関連する規制が多い（関連規則20数）
（7）品質基準が高しい
（8）工事費，関連経費が高い
＜6図＞
今後の技術課題

<7 図 $>$

プレードの半径各位亩での空力荷重とレイノルズ数が異なる
多電発電機の探用による睢速ギヤの峟略による軽量化と低験音化

風事用尃用室型の開発	プレードの半径各位富での空力苛重とレイノル大数が異なる
キャレス風力タービン	多㮌発軍機の探用による墙速ギヤの省略による軽量化と低臨音化
可要速発啇システム	風車ロータを風の強弱に応して可充連で回枟きせ，ロータに加わる空力葻䡛荷重を級和する
低䳪苇風力タービン	ルの嘧的構造化による低㮌音化
采樓造システム	の向上，喜㗆，コストの低減を図る
風車南用発電機の縣発	たるまで風事特性と雃合する特性の亘用発相機を開発
䒬䋁連菜方法の哺単化	る輱単で低コストの方法の開発
商強庵－経量表材の開発	大型化するプードや回転部分の高強度•経書化が必要
垂直軸燏力型風車の開発	水平轀風車に対して多くの利点を有するダリウス型やジャイ口ミル型など垩直軸揚力型風車の実用化
新毽設工法の碓立	山岳地や離鳥における大型輸送機器や大型重機不赵の㜛設工法の確立
オフショア風カ発蕳シス テムの開発	風況に覀まれたオフショアでの多目的大規模風力発雨システ ムの開発
風車設置場所の選択手法 の開発	卜遦択の手法を閎発する

<8 図 $>$

富士山一雪氷の世界から眺める

富士山をじっと眺めておりますとわけのわか らない雪崩が起きている。しばしば変な遭難を起こす。静岡に来て以前，富士吉田で雪崩があっ て非常に大きな遭難事故があった。富士山には我々近いところに居るのですが，富士山の実態 はよくわかっていない。夏は登れるが冬は遠く から眺めているだけである。そこで今日は冬の富士山というものにつき話したいと思います。

富士山は緯度で云うと北緯 35 度，駿河湾の奥 の内浦などでは増床性の珊瑚が取れ，暖かい亜熱帯に近い環境があり，富士山の頂上は亜極帯，極に近く寒暖の差が大で，なおかつ富士山は火山であるということで特徴がある。富士山の周辺には沢山の既成火山があって新しい溶岩の流出があり，青木が原溶岩流は，平安時代に噴火 している。また吉田大沢，富士大沢ですが，こ こを通って大量の土砂が流れ，1834年には富士宮付近までの大土石流が流れたのです。富士山 に雪が降るのは春になってからです。11．12．1．2．月は殆ど雪はない， 3 月， 4 月，日本の南岸を台湾坊主の低気圧が通るようになると雪が降り出します。真冬の季節風が吹いているときは富士山には水分がこないのです，富士山に雪が降 るのは南から暖かい空気が水分を持ってきて始 めて雪となる。この頃富士山中央部の宝永山，御殿場の太郎坊，須走の登山道にかけてしばし

ば雪崩が起きる，これが富士山で呼ばれている雪代という雪崩です。これは雪代の一種ですが 1992 年の 12 月に起きた雪崩の分布図（1図） です。雪崩というのは 2 種類に分けていますが，一つは表層雪崩，雪の層が溜まって，層の内部 で切れて滑る，雪だけが滑る，もう一つはスラッ シュ雪崩，雪の層のなかに気温が上がって雨が加わってシャーベット状になる，ゆるい角度で お汁粉みたいなものが流れ出すこれをスラッ シュ雪崩といいます。このスラッシュ雪崩とい うものが富士山麓で歴史的に以前からその現象 があるといわれ，それを雪代という。雪代とは雪の代，苗代の代と書きます，元の語源は雪汁 だと思いますが，同じ低気圧の通過で全く異な る種類の雪崩が同時に起こる，という不思議な現象が起きる。普通富士山の斜面は透水性が良 いから雨は地表面に浸透するのが普通ですが冬 の間に地盤が涷結している，そうして全く水を通さない状態になっているところへ降った雨が凍結した表面に沿って浸透し水が流れ出します。
（2図）そしてその水位がだんだん高くなると，雪をだんだん流していく，それが斜面を扇状に広がって東斜面全体に広がり，同じ高さの所か ら一斉に始まる，1995年の雪崩の後ですが，駐車場の売店が木つ端微塵になっています。あら ゆるものが飛ばされてしまいます。スラッシュ

＜1図＞

スラッシュなだれの発生機構。
<2 図 $>$

雪崩は液体に近いものですから大きいものはど んどん避けて流れていきます。丁度アメーバみ たいに抵抗があればそこを縫って行く，スース

と入ってしまう，こういう面白い雪崩である。富士山の高いところでは，山頂でマイナス7度，年がら年中凍っているところは永久凍土がある。富士山の場合永久凍土の部分は 3200 メートル くらいから上のところになります。その下は季節凍土といって夏は解けて冬は凍る，そこに雪 が降る，これが富士山の斜面の特徴です。春に なって雪が解けても永久凍土また季節凍土が通 しませんと水が下へ逃げないでそこから動き出 す，それがこの雪崩のスタートの原因である。次に東富士の須走り口で，掘ったり，崖を調べ てみると（3図），富士山の火山活動の，スコリ ヤ，これは火山灰で噴火でできたもの，またス ラッシュラハール，ラハールとは火山土石流で， これらが交互に何 10 層と堆積している。火山灰 はどういう火山灰か解っていて含まれる木片で年代が解るので，スラッシュフローがいつあっ たかがおおよそ解る。富士吉田，此処で約 2 メー トル，ランダムな地層が出てきます。これは歴史的に解っている江戸時代の天宝 5 年に富士吉田を襲った雪代の堆積物である。その辺は今田 んぼになっているがこれを耕地整理して市街化 しようとしている。次の記録は一番古い雪代の記録ですが，ある寺，富士吉田の古いお寺の記

＜3 図＞

録に，＂天分 14 年，（1545年），2月12日，富士山より雪代水を押して富士吉田へ押しかけ人畑とも押し流し候，その水にて下吉田ことごと く押し流し灰残らず候，大麦小麦，5月まで雨一つ降らず＂との記録があり，雪代水とでてく る事の最初です。そのあと，永禄まで 15,6 年の間 $5 \sim 6$ 回富士吉田の町がやられたとある，そ れから天保 5 年， 1834 年また再び富士吉田の東側がやられた，田んぼだったが部落の一部のみ残して大方やられている。静岡県側はどうかと いいますと，天保 5 年富士大沢を流れたものは，今の潤井川の川久保近く入山瀬，五味島，まで の間大変な被害があったと，絵に書かれている。富士山円周にも大災害が起きていて，このとき の江戸の瓦版に，豪雨と地震（地震ではない），強烈な雨が降ったらしい，ものすごい大災害 だったとあり，江戸まで鳴り響いた。（4図）

さて，富士山があんなに高く保っているのは永久凍土があるからで，なければアッという間 に無くなってしまう，あの美しい姿を保ってい るのは永久凍土のあるためである。

<4 図 $>$

（財）しずおか産業創造機構の紹介と技術士への期待

 会員 石野達佳

 会員 石野達佳}

私は専用工作機械の企画開発，設計製作，に携わり，1986年，機械部門の機械加工，加工機 の技術士をとつた，2002年3月，技術士事務所開く。2002年4月静岡産業創造機構のプロ ジェクトマネージャーを始め，現在に至る。
創造機構の機能施策は中小企業にとつてのあら ゆる施策があるということです。皆さんとかク ライアントの方には是非機構を使っていただき たい。基本的には国および県の税金と 290 社く らいの企業の寄付金で運営しております。

機構の成り立ちについて

平成12年03月 本県における産業支援の中核的な機関の創出を図るため，（財）静岡県科学技術振興財団を解散すると共に，統合先の（財）静岡県中小企業振興公社を，（財）しずおか産業創造機構に名称変更。

平成14年04月 都市エリア産学官連携促進事業を受託

平成15年04月 県立ガンセンター内にファ ルマバレーセンターを設置し，共同研究支援業務，臨床試験支援業務等を行う。県単独の事業 です。

所在地は静岡県産業経済会館

$$
\text { 静岡市追手町 } 4401
$$

本部は 04 階
02 階に相談窓口があり，
07 階にスタートアップのコーナーとオ フィスが御座います。

出資金は，現在，73億5722 万円，合併前の基本基金が，3億500 万円，科学技術振興基金が， 70 億 5222 万円合計 73 億余となります。当初 80 億 5222 万円だったが昨年度より中小企業へ の創業を強くするということで財産を 10 億円 を取り崩した。今年度 2 年目に入り 5 年の次元法であって年 2 億の助成を行っております。財団法人しずおか産業創造機構は，中小企業の

中核的支援機関ということですべての支援策は私共を介して施行するというシステムになって いる。（別紙連携体系の図）
事業規模について当機構の事業は国，関東経済産業局，県の補助金，国，県の政府系金融機関 からの借入金，県の独立行政法人の委託金，県 からの出資金高度化資金等で，平成 13 年度は 1，871，837 千円，14年度は 2，336，167 千円，15年度 2，574，365 千円，が予定の規模です。具体的な事業の割り振りとしては次のようになつて いる。

1．国，県が2分の 1 を補助する事業，中小企業経営資源強化対策費
2．県単独補助事業では，スタートアップオフィ ス運営事業，新技術新製品市場開拓事業出展の支援，その他支援人材補助。
3．出資金，高度化資金運用事業。研究開発支援事業，これは，基本財産を 10 億円取り崩し5年間，1年間2億を助成しようとす るものです。内容は3つあってひとつは地域イノベーション促進研究開発助成事業，
I T 事業の推進研究開発助成事業，もう一 つ特許等技術移転新助成事業，創造的中小
企業創出支援事業いわゆる間接投資等です。組織ですが，（別紙）理事長，副理事長兼専務理事。その下に事務局長，プロジェクトマネー ジャーの私とサブマネージャー，がおり，企画，創業ベンチャーの調査診断，経営支援等をやつ ている。
他に県立がんセンター内にファルマバレーセン ターがあります。これは，富士山麓先端健康産業集積構想を計るために，中核的新事業として設置し，共同研究支援事業，臨床試験支援事業 をやつています。先進医療普及新事業文部科学省直接の支援事業である，都市エリアは，ウェ ルネス産業を創設，心身ストレス克服を目指し

主に海洋深層水，健康福祉食品をやつておりま す。地域研究開発促進拠点支援事業は，研究シー ズニーズの，発掘に伴う企業調査研究のための企画立案を行う。もうひとつの技術士へのお願 いというところで先ほど申上げました専門家派遣事業。これを皆様方にご参加登録をお願いし たいと思っております。現在登録者の数は 352名ですこの事業は企業家の方からまず私達のと ころへこういう先生を欲しいのだがと来ますか

ら，私達がお客さんの要望を聞きまして勤務内容を吟味してこの先生が適当ではないかと言う ことで派遣するわけです。派遣先の企業ですが，業種別では経営内容から製造業が多く，情報化 からでは卸売業，技術についても殆ど製造業で す。
（記載出来なかったが別紙資料あり）

太陽熱利用技術の現状と課題

昭和 48 年ごろ吸収冷凍機という機械を会社 で開発しておりました。吸収冷凍機は外燃機関 でして，外から熱を加えて中で塩水を沸騰させ て冷房をするという変わつた機械でした。当時 は珍しかったのですが，今この建物も隣の建物 も使用していると思います。当時アメリカで発表を行いましたら大変センセーショナルな反響 があったことを鮮明に覚えております。

新エネルギーの今後の目標として，太陽光発電と風力には非常にドライヴィングがかかって いるが太陽熱利用については既に技術的にも商品的にもかなりの域に達しているので，新エネ ルギーの導入施策からは外れています。これは身近なエネルギーでありますし，ご家庭で温水器をぽんとつけますと，年間通じて $7 ~ 8$ 割の熱量が賄えるという代物です。これから太陽熱利用のいくつかをお話しますが，太陽熱給湯が ポピュラーな使い方です。太陽熱暖房について は太陽熱を空気で集める場合と，水で集める場合の二つがあって，空気で温めるほうが主流で す。この先頭を走っているものが，OMソーラー ハウスという浜松に拠点のある会社です。この ソーラーハウスの構造は別図の通りです。空気 の取り入れ口から屋根裏を通り，トタン屋根の裏側で温められ，最後にガラス付の集熱器を通ってそれが部屋の中を通つていく，新鮮工ヤ が入っていくので常に部屋の中の空気が汚れ

ないということです。暖房方式が床暖房なので ふわつとした暖房である。この方式がかなり採用されている。田貫湖ふれあい自然塾の $161 \mathrm{~m}^{2}$ の中規模のものもあります。これは 2000 m ²の，金山中学校の，屋根全面で集熱するもので，体育館です。太陽熱で冷房しようとすると吸収冷凍機，世界でもこれしかないのです。浜松駅前 のプレスタワーのもの，20年程前私達がつけた ものです。これで上の 2 階分の冷暖房給湯です。 362 平方メートルです。最近はハイブリット的 なものも出来まして，清水市社会福祉会館です が，大きい建物にちょこつとつけて太陽熱冷房 をやっている，ソーラーリンクという，出来る範囲でやるという考えで使われていくと思われ ます。太陽光発電は有名になりましたが太陽熱発電も出来ないわけではない，200～300度の温度で集熱すれば熱発電も出来ます。パワー型， トラフ型，放物面型などで熱を集めて蒸気ター ビン，発電機を回すシステムがあります。これ はイスラエルでのものですが，一枚 $3 \mathrm{~m}^{2}<ら い$ の反射板を何枚かコンピューターで動かして，集熱板に熱を集中させるものです。又，光とハ イブリットにしたものがありまして，プレハブ メーカーの皆さんが殆どが持っておりますが，集熱と，発電は $3 \sim 4 \mathrm{Kw}$ のものハイブリット にし，1 戸建て住宅ではこれが主流になってい ます。世界ではどういうところで利用している

のか。イスラエルでの太陽エネルギーの利用は 1980 年に， 9 階以下の新築住宅は全部太陽熱温水器をつけなさいとの法令が出ている。85年に なると全ての住宅に変わった。90 万台が普及，普及率 70% です。世界中で最も太陽熱利用が進 んでいるのがイスラエルと思う。2001年中国を みた。太陽熱温水器の市場は過去 10 年間に年率 $25 ~ 30 \%$ の伸びを示している。エネルギーが ない。電気料金は高い。凍結破壊しない真空管形が開発されて利用出来る地域が拡大した。こ のように 3 拍子そろえば，年率 25 ～ 30% の勢 いで普及が始まっている。イスラエルはエネル ギー市場緩和のため強制的に，中国は経済性が，

認められ普及している。ハワイでも使われてい るがハワイ諸島は電力逼迫があり，回避するた め電力会社が随分お金を出している。日本は環境に優しいと言う言葉くらいしか出てこない。日本では熱の方は難しい状況にあります。OM ソーラーハウスのような空気システムの建物と の一体型の商品になつておりまして，いま建物 の外観を壊さないでエネルギーが取得できて環境にやさしい生活が出来ますという，これが受 けてOMさんが活躍しております。あと採光シ ステムとして熱と太陽電池との複合製品が開発 されて普及していくと思います。あと事例を紹介します（写真）

<1 図 $>$
風力開発と環境問題

＜2図＞松本文雄

今回は環境問題にかぎって話すということ だったので，風力開発と環境，日本と，世界の風力開発にどんな問題があるかについて話しま す。
風力開発と環境課題として，（1図）に環境とい うと自然環境と社会環境，また建設時と，運転時に分けてあるが自然破壊は建設時に起こる，植生の破壊，土壌の崩壊，修復，洋上発電では漁場の破壊も起こる，大きいのは運転時の野生動物への影響である。猛禽類とか渡り鳥に対し てどう言う影響を与えるのか，風車に野鳥が当 たって死ぬこともある。洋上発電では海洋資源 にも影響を与える。社会環境について言えば，人間がこういうものに対して納得するかどうか

と言うことだと思います。特に運転時の景観を見て良いと思わない人がたくさんいるわけです。 だから，住民への了解を得るために太陽熱，太陽光，そういうものを含めて，自然エネルギー全体を啓発していくことを建設前にきちんとや らなければならない。そのほか騒音，電波障害，陰影は小型風車の時問題になります。威圧感，圧迫感，電力の安定性，特に変動するものです から電力会社に対しどれだけ許されるかもある。騒音，漁業権問題はまだ日本では起きていませ ん。イギリスや北欧の方では，漁業組合そのも のが自分の漁場に風車を立つ例もある，アメリ カのジッぺというお爺さんの人が，10年前に書 いた本に環境のことについて，デザイン，人に

対するアクセスタンス，自然，動物に対するイ ンパクト，人間に対するインパクト，大地に対 するインパクトなどにつき全て 10 年前に挙げ ている。こういうことを書いている人は今でも日本にはいない，勿論私もです。10年前でもこ ういうことに関して知見をもっている人が外国 にはいる。風車の近くで鳥が死んでいる。バー ドストライクまたは，インパクトオンバードと いうが，こういう調査を各国でやっている。

＜1図＞
（2図）日本でも野鳥の会などが始めようとし ています。
松前小島の場合，此処が貴重な鳥の宝庫であつ たらしく，後から死骸が何羽か見つかったと言 うことで，産卵して卵孚化する間は，倒せとか，停めろといわれた。神子元島，では，カンムリ ウミスズメがいる繁殖地で，問題になつている ところです。大きな風車は回転数が少ない，10 ～20RPM です。小さいものは回転が速いので鳥の通り道にあたると被害が出ることがわかる。景観の問題は，風車の形を揃えなさい，視界の密度をコントロールしなさい等，アメリカの例 ではコンサルタントがこうしなさいというもの を出している。サンフランシスコの東の方の沢山の風車の例だが，これはいい例ではない。（3図）ポルトガルの田舎の例ですが，この例は多分綺麗でないと言う人は無いだろうと思う。景観美は比較すればわかる。街中の居住地なんか につけるのは中小型の風車が多いのですが，生活エリアの中で回りますので影が出来る。（4
図）影を喜ぶ人はいない，私のものでは裏の家

<2 図 $>$

に冬至の頃影が出ますのでこのときは止めるよ うにしています。騒音は小さい風車では 45 db くらいですが人の居住地の騒音は 40 db 以下と の推奨値がありますから，5メートル以上他人 の家から離れていることが必要です。大型風車 の場合 200 メートル離れたところで 40 db 以下 という制約があります。さらに500メートル以内の住民に全員に対して設置の了解の印鑑をも らわないと設置ができないと言うような制約も あります。風車の騒音は，増速をメカニカルな ギヤでやりますので原因は増速機にあります。 それとブレードの先端が風を切る音の両方が風車の騒音です。増速機をなくするには発電機を同期発電機で多極のものにする。（5 図）また可変速運転にするには，同期発電機の場合は風の早いときは少し早く，少ないときはゆっくり回 し，周波数の変わった交流を作って整流器で整流し，直流にしてインバーターを通して系統に送り出している。そのため交流直流，直流交流 と言うリンクの仕方をする，これが DC 方式で最近増えております，誘導発電機を使った方式 をAC方式と言っておりますがこれは減ってい

＜ 3 図＞

<5 図 $>$

る。風車は運転時には炭酸ガスとか硫黄酸化物 とかを出さない。660 KWの風車で年間 186 万 KWH の電力を出すわけですが，炭酸ガスで 1600 トン，硫黄酸化物で $5 \sim 6$ トン，窒素酸化物で $4 \sim 5$ トン，スラグ，灰が，102トン分環境に優しかったと言うことになります。風力発電の特徵は燃料が要らない，企画立案が早い ということがある，川野辺ダムなどは 30 年やっ てもまだ発電できないものもあるわけです。原発も簡単に建てられるものではない。風力は企画から 3 年くらいで出来ますから，インドや中国は早く発電できるということで盛んです。風力は発電量が変動しますので電力会社のバッ ファーで賄ってもらっているが，その代替法と して電気分解などやって水素を蓄えると言うこ とも今後考えられます。私の宣伝ですが，（6図） はある博物館に収めた風車の形です。 12 台です が，これを通して中学生，高校生に，風力と言 うものを人間がどう使ってきたか，どう使うか， の教材にするものです。一昨日オープニングし ました。風力の啓発をしていきます。

＜4図＞

自動車における資源睘境技術

私専門は内燃機関，エンジンの設計をやって いました。テーマは＂自動車における資源環境技術＂です。今世界の異常気象とか海面の上昇 とか考えますと，これからの自動車は，CO2 の排出の少ないもの，また CO 2， NOX ， HC ， などが，喘息とかアレルギー症状を惹き起こす

のでこの対策が遅れた。使うエネルギーがタン クに入るまでにどれほどのエネルギーを使うか， という調査があります。ガソリン，ディーゼル油， ナフサ，などは少ない。つぎにタンクから実際 に走った時にどれだけ燃料を消費する，つまり CO2を発生するかと言うことですが，これに ことから，また PM 又 SPM ，

DPM の粒子状物質，最近は DPMが，発がん性ということで問題になっているのでこれらの少ないものを，また車を廃棄し たときに出る有害廃棄物，特に鉛，カドミューム，水銀，六価 クロムという重金属類は出さな いと言うことで規制されます。欧州は地球温暖化対策というこ とに非常に関心が高く，CO2 削減対策として，ディーゼル車を積極的に国民が採用する方向性 です。日本はディーゼル車を規制する方向だが，DPMとか， NOXなどを削減すれば，乗れる わけです。日本で消費される中東原油が，北海原油などと比べ ると，硫黄分が多いため軽油の いおう分の低減が遅れた。PM を規制するには，ディーゼルエ ンジン用の排気にフィルターが必要，その触媒が燃料中に含ま れている硫黄の含有量が高いと劣化させる原因になると自動車 メーカーが言うわけです。石油業界は，中東原油だから硫黄が沢山入っているからしょうがな いと言う，お互いの所為にした

各国の低燃費自動車開発への取り組み

－日本．．PMの排出問题が黄しがリリンハイフリット車の飺品化が先行

```
* 量産化されたハイブリッド車
    TOYOTA :プリウス,エスティマ,クラウン,コースター
    NISSAN : ティーノ
    HONDA : インサイト,シビック
    SUZUKI : ツイン
    日 野:デュトロ
```

－EU ．．•地球温暖化に関しが呂く，co2拂出の少ないディーゼル車が普及
＊EU平均で 40% をこえる普及率
＊燃料消費量の多い大型車の方が普及率が高い
＜1図＞

ディーゼルエンジンの排出ガス対策

－ CO_{2} 排出低減（低燃費化）

```
* ターボチャージャ付加(燃焼効率改善)
* 燃料の露化改善->高圧燃料直接噴射(高圧コモンレール式燃料
    噴射)による燃焼効率改善
```

－PM（DPM）排出低減 DPM（Diesel Particulate Matter ディーゼル数子状物質）

＊燃料の露化改善 \rightarrow 高圧燃料直接噴射（高王コモンレール式燃料

噴射）による然焼効率改善- DPF（Diesel Particulate Filter）により捕捉し酸化処理（燃やす）
- NOx排出低滅 \quad 然料中の硫黄分はDPFの触媒 を漡める \Rightarrow 限りなく少なくする！
EGR（排気ガス還流）による燃焼温度上昇の抑制
－NOx 吸蔵触蝶によるN2への蠔元処理

Kandal CRA

はハイブリット車が良い，これは従来のエンジ ンに二次電池とモーターを組み合わせたもので す。今後ディーゼルのハイブリットが私の見解 では有望視されると思う。燃料電池車などはま だまだハードルが高い。これらの資料は GM の研究者がEPAに出したものです。資源を採取し て使ったときに出るグリーンハウスガス，その量を推測したものでは，石油系燃料を使った場合は，ナフサ燃料電池で走らせた場合が一番良 い。再生可能なエネルギーの仲間では，アルコー ルを使うものはCO2を大気から取り达むと言 うことでマイナス方向に行っている。これを使 えば最高だが，車の走れるだけのサトウキビ畑 がいるとなると大変なことになるであろう。 C ○ 2 の対策として発生を抑制すると言うことが まず大事です。ですから省エネ技術の開発です。抑制するには各国とも燃費規制が行われており ます。日本はガソリンが 2010 年に，ディーゼ ルが2005年となっている。EUは，2014年に は $120 \mathrm{~g} / \mathrm{km}$ 位にする。ガソリンの車でリッ ター 20 km くらいのものを達成しなければい けない。低燃費の車の開発ですが，日本では， PMの問題のないガソリン車のハイブリット車 に元気を使っています。トヨタのプリウス，ホ ンダのインサイト，の二つを後で説明します。 プリウスの場合 1 リッターで 35 km ですが，ホ ンダのインサイトもほぼ同じ，実際アメリカで

<3 図 $>$

の排煙モードでは，一番がインサイト，二番が シビック，三番がプリウスです。EUでは，環境に関連して深刻に考えているようですが C O 2 の排出の少ないディーゼル車が爆発的に普及 し始めています。特に大きい方のベンツクラス のものの普及率が高いようです。次にディーゼ ルエンジンの排出ガス対策ですが，CO2対策 は霧化を改善するため，高圧コモンレール噴射方式という技術，D P M，粒子状物質をとるた めには，フィルターを使ってそこに溜まったも のを間歇的に燃やしてやると言う技術が開発さ れている。その際に触媒の反応を使いますので，燃料中の硫黄分が多いと効果が発揮できないし， フィルターを痛めてしまう。燃料をまず規制し ないといかんというわけです。 N O X では ディーゼル車の方が高い温度で燃焼しますから温度を下げるために一部排気を戻してやり温度 をあがり過ぎないようにし，NOXを減らしま す。また，NOX吸蔵触媒と言うものがあって トヨタの開発したものですが，NOXの酸素の部分をとってしまって窒素に戻してしまう，と いうことで処理しています。軽油の硫黄分が50 P P Mですと言うガソリンスタンドは，サイン ポールを掲げてある。皆さんも見てください。

ハイブリット技術を日本は採用しているが，従来のエンジンに電気自動車の技術，燃料電池車の技術，そういうものを最適に組み合わせ運

<4 図 $>$

転するようにしたと言うことです。電子制御技術，バッテリーが軽量なことと，沢山の電気を入れたり出したりできること，動力分配機構， これはトヨタが採用した技術，小型高能率モー ター技術，この辺は日本の得意とする技術です。最適化というところも得意だと思います。ハイ ブリット車の駆動方式が，（4図）にありますが，直線が機械の流れで，点線が電気の流れです。 シリーズ方式はエンジンで発電機を回します。 この電気を電動機に持っていって，駆動輪を回す，そのとき一度に電気を使ってしまわないで，一部は バッテリーに蓄えておきます。ス タート時バッテリーをうまく使え ばモーターを回してエンジンをア シストできる。二次電池をうまく使うと言うことです。パラレル式 は，あるときはエンジンで駆動輪 で回して，あるときはシリーズ式 のように発電機からの電気で電動機を回す。この二つを使い分けて， やる方式です。もう一つシリーズ式とパラレル式の両方のメリット を組み合わせた併用式があり，ト ヨタのプリウスはこれを採用して いる。パラレル方式はホンダのイ ンサイトです。此処にプリウス （5図）ですが，去年改良してア メリカでカーオブザイヤをもらっ た。特徴は遊星歯車機構を使って いる，動力分配機構，差動歯車機構ですが，これを入れている。日産自動車も採用することになった。 アメリカのGMもライセンスを買ったのではないか？ホンダは独自路線で行く。プリウスの特徴は遊星歯車機構を使って，異なった種類の動力，エンジンとモーター

を連続的にロスなく結合，切り離しができると いうことです。それにより従来使っていた変速機を使わなくても良いことになった。ライバル のインサイトは，二人乗りです。プリウスは 5人乗りです。ホンダの場合は，インテグレイテッ ドアシストモーターを使う，モーター兼発電機 があり変速機が必要です。動力分割機構がない，発電機はつけていません。モーターが一人二役 です。モーターと二次電池，ニッケル水素電池

プリウスのハイブリッド方式の特長

－遊星式差動歯車機構（動力分割機構）の棌用
＊買なった種類・トルク特性の動力源を連続的に機械損失なく結合，切り離し が出来る
－内燃機関と電動機と二次電池のいいとこ採り
＊低回転低負荷域で効率の良い電動機と高回転•高負荷域て効率の良い内橪機関の組合わせが，上記の機構により成立 \Rightarrow トランスミッションの廃止
＊上記電動機用に改良された瞬時に大電流を出力可能なコンパクトなニッケル －水素二次電池の綵用
＊電動譏による回生ブレーキの搮用（墄速エネルギーを電力として回取）

- 高効率のエネルギー管理を行なう，電力•動力管理
- コンバータ，インバータ技粆およびコンピコータによる最適制卸
＜ 5 図＞

インサイトのハイブリッド方式の特長

－クラッチと変速機の間に発電機能を備えた特殊電動機竝備
＊電動機はエンジンの補助動力としての役割
＊プリウスとは異なり，変速機が必要であるが，コンパクトさでプリウスに勝つ
＊電動機が駆動軸に一体で向ウスのような動力分割機構をしていない
＊プリウスで別に必要な発電機が必要ない（電動機が制動時，電力回生発電機）
－内燃機関と電動機と二次電池の良いとこ採り
＊上記電動機用に改良された瞬時に大電流を出力可能なコンパクトなニッケル。水素 二次電池の採用
＊電動機による回生ブレーキの採用（減速エネルギーを電力として回収）
－高効率のエネルギ—管理を行なう，電力•動力管理
＊コンバータ，インパータ技涬およびコンピュータによる最適制御
－燃費記録狙いの車体設計

＊居住空間を構牲にした低空力抵抗デザイン（ 2 人乗り ${ }^{(1)}$ プリウスは 5 人乗り）

との関係は同じです。エネルギー管理も同じで す。燃費記録がいいように狙つた車体の設計が特徴で，アルミ，を使つて軽量化してある。プ ロウスに比べると 400 kg も軽い。自動車の未来像について私見を述べます。この先15年くら いは内燃機関ハイブリットが主流，トヨタやホ ンダのやりかたですね，ディーゼルを使えばよ りよくなるのでディーゼルハイブリットが最終，

燃料電池ハイブリットは実用化が15年位先，日本ではディーゼル乗用車の普及は進まない，E Uは，数年後にはディーゼルハイブリットを使 うのではないか，ベンツは燃料電池車を主な ターゲットにしている。天然ガス系水素燃料電池ハイブリットへの実用化は日本と同じだろう。 アメリカはブッシュ政権が継続すると，世界を環境面でリードするようなことは無いだろう。

－会員の消息—

\diamond 新入会員紹介
（1）氏名
（2）生年月日
（3）技術部門 登録番号
（4）最終学歴
（5）勤務先
（6）TEL，FAX

106 号の会報をお届けします。今回は12月，2月例会（会員講師による研修会）の報告で す。会員の皆様の日頃の業務の
一端をご紹介頂き，大変有意義な例会 となりました。なお，その内容が大変 なボリュームでありまして，その全部 をご紹介出来なくて，講師の方々に大変申し訳なく思っております。勿論こ れをお読みくださる会員の皆様にも，内容をご理解しにくいのではないかと

思いますが，お許しください。さて，今号 で中部の担当による編集作業は終了で御座 います。 2 年間いろいろと皆様のご協力を頂きまして，誠に有難う御座いました。ま た会員の皆様へ，もう少し見やすいもの をお届け出来ればよかったのにと反省し ております。会報の編集に関しましては今後も是非皆様のご協力をお願いいたし ます。有難うございました。
（編集委員•高尾，山之上，森）

